Categorification of a frieze pattern determinant

نویسندگان

  • Karin Baur
  • Robert J. Marsh
چکیده

Broline, Crowe and Isaacs have computed the determinant of a matrix associated to a Conway-Coxeter frieze pattern. We generalise their result to the corresponding frieze pattern of cluster variables arising from the Fomin-Zelevinsky cluster algebra of type A. We give a representation-theoretic interpretation of this result in terms of certain configurations of indecomposable objects in the root category of type A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized frieze pattern determinants and higher angulations of polygons

Frieze patterns (in the sense of Conway and Coxeter) are in close connection to triangulations of polygons. Broline, Crowe and Isaacs have assigned a symmetric matrix to each polygon triangulation and computed the determinant. In this paper we consider d-angulations of polygons and generalize the combinatorial algorithm for computing the entries in the associated symmetric matrices; we compute ...

متن کامل

Conway-coxeter Friezes and Beyond: Polynomially Weighted Walks around Dissected Polygons and Generalized Frieze Patterns

Conway and Coxeter introduced frieze patterns in 1973 and classified them via triangulated polygons. The determinant of the matrix associated to a frieze table was computed explicitly by Broline, Crowe and Isaacs in 1974, a result generalized 2012 by Baur and Marsh in the context of cluster algebras of type A. Higher angulations of polygons and associated generalized frieze patterns were studie...

متن کامل

On Categorification

We review several known categorification procedures, and introduce a functorial categorification of group extensions with applications to non-abelian group cohomology. Categorification of acyclic models and of topological spaces are briefly mentioned.

متن کامل

ThE BEaUTy Of symmETry TEXTBOOK

TEXTBOOK UniT OBJECTiVEs Symmetry, in a mathematical sense, is a transformation that leaves an object • invariant. Some symmetries are understood as geometric motions. • Some symmetries are understood as algebraic operations. • When symmetries are combined, another symmetry is the result. • Symmetries form what is known as a group, which allows mathematicians to • perform a sort of " arithmetic...

متن کامل

Categorification and Groupoidification of the Heisenberg Algebra

These lectures, prepared for Higher Structures in China III, held in Changchun, Aug 2012, describe a relationship between two forms of categorification of algebras by giving a combinatorial model for Khovanov’s categorification of the Heisenberg algebra in a 2-category of spans of groupoids. This is joint work with Jamie Vicary. The goal here is to describe two notions of “categorifying an alge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2012